Greetings and welcome to the December issue of the Mariners Weather Log. This issue ushers in the Holiday Season and the end of another year as well as the end of another hurricane season. I hope this issue finds all in good spirits, safe and sound.

If you read my last editors note, I touched on the importance of marine weather observations for the accuracy of forecasts, environmental studies and improving guidance towards better hurricane forecast tracks; this in turn is part of the equation for seasonal hurricane outlooks. Now that hurricane season is finally over, we can reflect on hurricane season 2013. In May of 2013, the initial hurricane outlook that was issued turned out extremely different from the actual outcome. NOAA is continuously dealing with the cause and effect of climate change and predicting hurricane seasons is no different. Looking back at 2013, it was predicted that our season would be “active or extremely active”. We were expected a 70 percent likelihood of 13 to 20 named storms, of which 7 to 11 could become hurricanes, including 3 to 6 major hurricanes. As it turns out, this year was the sixth least active season in the Atlantic Ocean since 1950. 13 named storms formed in the Atlantic and only two, Ingrid and Humberto, became hurricanes which neither achieved category 3 status or higher. My point is this; our forecasters are equipped with sophisticated equipment and data analysis that uses climatology and ocean temperature patterns that are shared by scientists all over the world in a collaborative effort. We collect critical atmosphere and oceanographic data to use in state of the art models to improve worldwide weather and climate prediction. Even though we have all this at hand, sometimes still won’t achieve the predicted outcome. Maybe it is because with so many variables to consider our models are not able to gauge things properly? Maybe gaps in the data availability due to data sparse areas give model guidance too much weight? That is where you, the marine weather observers enter the picture. With all this technology at hand, the fact remains that it is vital to gather accurate and timely marine weather observations for all of this to actually work. NOAA along with the international science community shares a growing concern of climate change. This is yet one more reason to never discount the importance of VOS participants sending in marine observations data. NOAA is working with partners worldwide not only to build a climate smart nation but a climate smart world. I urge you all to visit http://www.noaa.gov/climate.html and see where you fit into the equation. You will see that VOS is an intricate part of NOAA’s efforts in identifying climate pattern changes and improving forecasting ability. For the record, I am happy that the initial outlook for the hurricane season 2013 was not as predicted and we got through the season with minimal activity.

2013 may have been one of the least active in hurricane history, but tragically others were not so lucky. Early November Super Typhoon Haiyan devastated the Philippines. Haiyan had maximum sustained winds at landfall at 195 mph with gusts above 220 mph leaving a path of death and destruction that will not soon be forgotten. This was one of the strongest tropical cyclones in recorded history. In this upcoming holiday season, please keep the people of the Philippines in your thoughts and prayers.

As always, drop me a line or send in article ideas and photos. I am open to suggestions and look forward to hearing from you!

~Paula

On the cover: LTJG Brian Adornato, Navigation Officer, and Fisherman James Rhue retrieving the glider back to the ship
New Marine Weather Forecast Zones in Alaskan Waters Starting October 1, 2013

PMO Corner

National Data Buoy Center Tsunami Wave Glider Retrieved by NOAA Ship Oregon II

WANTED: Freezing Spray And Icing Observations

U.S. New York City PMO, Jim Luciani, completes the Marine Corps Marathon in Washington D.C.!!

SHIPWRECK: Henry B. Smith

Departments:

**Marine Weather Review**
Mean Circulation Highlights and Climate Anomalies – January through April 2013
Tropical Atlantic and Tropical East Pacific Areas: January through April 2013
North Atlantic Review: November 2012 through February 2013

**VOS Program**
VOS Program New Recruits: February 14 through June 30, 2013
VOS Cooperative Ship Report
Points of Contact
New Marine Weather Forecast Zones in Alaskan Waters Starting October 1, 2013

Dear Volunteer Weather Observers & Marine Operators in Alaskan Waters

The National Weather Service Anchorage Forecast Office is making changes to their forecast zones for the marine forecast in the Bering Sea and Gulf of Alaska beginning October 1, 2013. The purpose of these changes is to improve the forecast by creating smaller forecast areas.

Here is a map showing the current marine zones:

The following map shows the new zone divisions in red, with the new zone numbers highlighted in yellow:
Here is a close up of the proposed zones in the eastern side of the area.

These maps can also be found at:
http://pafc.arh.noaa.gov/newmarinezones/

Shapefiles for use within GIS are located at:

Our official change notice is located here:
http://www.nws.noaa.gov/om/notification/scn13-36alaska_marine_zones.htm

Please take a look at the proposed zones so you are familiar with the upcoming changes. We invite anyone with comments or questions to contact:

James Nelson
Science and Operations Officer
National Weather Service
WFO Anchorage
6930 Sand Lake Rd
Anchorage, AK  99502
(907) 266-5120
pafc-marine.feedback@noaa.gov
Matthew Thompson, the Port Meteorological Officer for the Seattle region sent some great photos for your viewing pleasure.

This photo was taken from the Bremerton Ferry of Seattle showing a great skyline.

A great shot of a sunrise over Seattle with the YANGTZE XING HUA in the forefront.

A great shot of a Bulk Carrier dealing with fog at the port of Longview Washington, in the Columbia River.

Impressive shots of the ship HORIZON CONSUMER taken at the dock in Tacoma Washington.
NOAA Ship OREGON II has conducted a successful at-sea recovery operation with a Wave Glider high-endurance unmanned surface vehicle manufactured by Liquid Robotics, Inc. and operated by the National Data Buoy Center (NDBC). During July, one of the NDBC’s prototype tsunami monitoring wave gliders sustained problems with the rudder control and operation of the vehicle. The wave glider was operating near the Gulf of Mexico loop current and recovery of the glider was urgent. It happened that the NOAA SHIP OREGON II was conducting a summer groundfish survey in close proximity of the drifting wave glider. Master Dave Nelson, his crew of the OREGON II, and the cooperation of the National Marine Fisheries Field Party Chief (FPC), Kim Johnson, pulled together and with quick response, led to the successful recovery of the wave glider. The return of the wave glider gave NDBC the ability to conduct forensics on the vehicle and continue with their efforts on improving wave glider operations. The cooperation and coordination between the NOAA Marine Fisheries FPC and fellow biologists, OMAO Ship Master and crew, and NDBC engineer Lex LeBlanc demonstrates a can do attitude on all levels. In an effort to recover the wave glider, a small boat was deployed to better guide the glider to the awaiting crane. As it turns out, the weather that particular day was perfect for recovery with little to no wind waves. If the recovery was delayed, the outcome would not have fared well as the next day (due to a frontal system approaching) seas were rough and recovery most likely would not have been possible. The float portion of the glider weighs about 60 pounds and the glider portion weighs about 200 pounds. The glider holds two antennas atop and the lower unit is attached by a high strength 21 foot tether (umbilical).

The Director of the NDBC, Helmut Portmann, is appreciative of the effort that took place to safeguard and retrieve this prototype wave glider. The effort saved valuable NOAA resources by avoiding the hiring of a contract vessel. In addition, because the wave glider was drifting towards the loop current, without quick response from the OREGON II, there was the possibility that the wave glider would have left the Gulf of Mexico making recovery much more difficult. Mr. Portmann wanted to officially thank Master Dave Nelson, his crew and the FPC in person for such a successful mission and to present them with a plaque.
LTJG Brian Adornato, Navigation Officer, and Fisherman James Rhue retrieving the glider back to the ship

Foreground, Skilled Fisherman Chuck Godwin with the ships crane being hooked up to the glider

LTJG Brian Adornato, Navigation Officer, and Fisherman James Rhue in the Rigid-hulled inflatable boat (RHIB)

LCDR Eric Johnson, XO and Skilled Fisherman Chuck Godwin bringing the wave glider aboard

LCDR Eric Johnson, XO and Skilled Fisherman Chuck Godwin securing the glider on deck
and letter showing his appreciation. After a brief tour of the NOAA SHIP OREGON II, Mr. Portmann had the opportunity to talk with many of the officers who were a part of the mission and the exciting details of that day. The FPC who was on the ship during the retrieval, Kim Johnson, was not able to attend, but her unit leader Butch Pellegrin attended and accepted in her absence.

Pictured: Director Helmut Portmann and Master Dave Nelson on the bridge of the OREGON II.

Photo courtesy by: Denice Drass
Lex LeBlanc offloading wave glider from the NOAA SHIP OREGON II
Photo courtesy: Paula Rychtar
WANTED: Freezing Spray And Icing Observations

Freezing spray is an important safety issue in many coastal Canadian and United States waters. Ice accretion on the superstructure and decks of a vessel can quickly compromise its stability and make the ship vulnerable to capsizing. The National Weather Service (NWS) and Environment Canada’s (EC) meteorological offices issue freezing spray advisories and heavy freezing spray warnings to alert mariners to conditions where ice accretion may occur.

NOAA and EC have traditionally used different freezing spray prediction models to make their forecasts, but in an effort to improve freezing spray forecasts, EC and NOAA have produced a suite of freezing spray guidance products that combine the different methods of EC and NOAA freezing spray calculations. This winter, marine forecasters from both Canada and the United States will be putting these new tools to the test; they will evaluate the models and provide feedback about how they think the models performed.

This project cannot be a success without your help! One of the key components to this study is observations. To thoroughly evaluate the different computer models that predict freezing spray, the team needs to know what conditions actually developed during icing events. Every temperature, relative humidity, wind speed, wind direction, ice accretion rate, and wave height observation submitted during this study will provide critical insight into model performance, strengths, and weaknesses. Each observation is a step towards enhancing the ability of each agency to protect life and property at sea.

Please visit the following website to view the guidance being evaluated in this project:

http://pafc.arh.noaa.gov/arctic/fzspy.php
U.S. New York City PMO, Jim Luciani, completes the Marine Corps Marathon in Washington D.C.!!!

I think it is important to showcase not only VOS program accomplishments but human interest stories and huge accomplishments or milestones of the people who make VOS what it is. I would like to share with you one such milestone. Our PMO from New York City, Jim Luciani, completed a grueling Marine Corps Marathon held in Washington D.C. this past October 27th. His time was 5:07:57, which I think is amazing. Jim said around mile 19 things got a bit tough, but he did not quit...he plowed through and kept on going!

Bravo Zulu Jim!!!

Photos courtesy of Jim Luciani
After being missing for almost one hundred years, wreck hunters, searching for the hull of the sunken HENRY B. SMITH, achieved success on May 24, 2013. The remains of the ship were discovered on the bottom of Lake Superior, in very deep water, off Marquette, Michigan.

This freighter was one of the victims of the “Great Storm of November 1913” that swept in from the west and turned the upper Great Lakes into a death-trap for an estimated 251 sailors. While most of the losses occurred on Lake Huron, there was devastation and destruction elsewhere as well.

The HENRY B. SMITH was a product of the American Shipbuilding Co. of Lorain, Ohio. It was completed in June 1906 and registered under W.A. Hawgood & Co. The title of the 545 foot long by 55 foot wide bulk carrier was later noted under different arms of the Hawgood fleet and it was listed as owned by their Acme Transit Co. when the vessel disappeared.
Primarily an ore carrier, the steam powered HENRY B. SMITH usually loaded at one of the numerous Lake Superior ore docks of that day and sailed down the lakes for discharge at one of the steel mills or at a port that had rail connections to an inland steelmaker. A large carrier for the era still dominated by schooners and wooden hulled freighters, the HENRY B. SMITH was, by all accounts, a successful ship until the fateful storm of a century ago.

HENRY B. SMITH arrived at Marquette on November 7, 1913, but loading was delayed by frozen ore. Unseasonably mild weather helped remedy that situation and the ship got the cargo aboard and headed into Lake Superior and the voyage down the lakes to Cleveland on November 9.

Without the good weather forecasting of today, the ship did not get far as it was soon overtaken by the plunging barometer, wind whipped waves and falling temperatures. The mild and pleasant afternoon soon became a nightmare evening for the mariners caught in the grip of the storm.

It is believed that the HENRY B. SMITH departed port with some of the hatches still uncovered. This was not unusual for the day and it allowed the deckhands time at sea to finish the task by putting the wooden slats in place and battening down the heavy tarpaulins while the ship headed down the lakes. This worked fine under most circumstances but this would not be a normal circumstance.

Encountering rough weather, there was some thought that the Captain turned his ship to port seeking shelter off the Keweenaw Point but it was too late for shelter and neither ship nor any members of the crew were ever seen again.

A bottle with a note claiming that the HENRY B. SMITH broke in two at #5 hatch, 12 miles east of Marquette was found but the authenticity of this was questioned at the time. However, images of the rediscovered hull in 2013 note that the ship had cracked, likely on the surface, and that some of the cargo of ore was scattered along the bottom of the lake.

All 24 sailors perished and only two bodies were ever found. Debris was scattered along the south shore of Lake Superior from the famous Pictured Rocks to Grand Marais, Michigan, and the loss was pegged at close to $350,000.

The finding of the HENRY B. SMITH closes another chapter in the history of the “Great Storm” but there are other ships at yet undiscovered locations from the wind, waves and blinding snow of that terrible event of November 1913.
Mean Circulation Highlights and Climate Anomalies
May through August 2013

All anomalies reflect departures from the 1981-2010 base period.

May-June 2013

May 500-hPa heights were above-average from eastern Siberia eastward across the far northern Pacific and Canada to the high latitudes of the North Atlantic. Above-average heights were also noted over western Russia. Below-average heights were observed throughout the polar region, Europe, and central Russia (Figure 1). The sea-level pressure (SLP) pattern mostly mirrors the 500-hPa pattern (Figure 2).

June 500-hPa heights were above-average across Alaska and western Canada, the southwestern contiguous U.S., the central North Atlantic, and northwestern Russia. Below-average heights were observed over the polar region and southern Greenland (Figure 3). The SLP pattern weakly reflected the key features mentioned in the 500 hPa height field (Figure 4). As is typically the case during the warmer months, the stronger 500 hPa height and SLP features were observed at higher latitudes, consistent with the seasonal pole ward migration of the jet stream.

In Alaska, the May and June temperature patterns contrasted sharply. In May, unusually cold temperatures prevailed over the central Interior, with some areas as much as 4-5 C below-average for the month (Reference 1). The cold weather delayed the annual breakup of ice in the Tanana River in Nenana until May

500 hPa Heights and Anomalies: Figures 1,3,5,7
Northern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/ Reanalysis). Mean heights are denoted by solid contours drawn at an interval of 6 dam. Anomaly contour interval is indicated by shading. Anomalies are calculated as departures from the 1981-2010 base period monthly means.

Sea-Level Pressure and Anomaly: Figures 2,4,6,8
Northern Hemisphere mean and anomalous sea level pressure (CDAS/ Reanalysis). Mean values are denoted by solid contours drawn at an interval of 4 hPa. Anomaly contour interval is indicated by shading. Anomalies are calculated as departures from the 1981-2010 base period monthly means.
20th, beating the previous record by several hours. On average, ice in the Tanana River breaks up around May 4th (Reference 2). June, on the other hand, featured unusual warmth over Alaska. Temperatures in the central Interior and in south-central Alaska were as much as 4-5 C above-average for the month.

The Tropics

Sea surface temperatures (SST) remained near-average across most of the equatorial Pacific during the May-June period, and below-average over the far eastern Pacific. The latest monthly Niño 3.4 indices were -0.3 C (May) and -0.2 C (June), well within ENSO-neutral territory. The depth of the 20 C isotherm (oceanic thermocline) remained near-average in the east central equatorial Pacific. Equatorial low level easterly trade winds remained near to above-average over the western equatorial Pacific, and tropical convection continued to be enhanced over Indonesia and suppressed over the central equatorial Pacific.

July-August 2013

The 500 hPa circulation pattern during July 2013 featured below-average heights across much of Russia, and above-average heights across the high latitudes of the North Pacific, Eastern Canada, and Western Europe (Figure 5). In North America, the mean 500 hPa circulation featured a strong ridge centered over the Rocky Mountains and a deep trough over the midwestern contiguous U.S. This pattern reflected a westward shift of the mean summertime ridge axis and a deepening of the Hudson Bay trough. Over the northern and eastern flanks of the North Pacific, the circulation pattern was associated with a weakening of the mean trough over the Gulf of Alaska, and an overall poleward shift of the mean westerly winds and storm track. The sea level pressure and anomaly map (Figure 6) mirrors the 500 hPa pattern.

500 hPa Heights and Anomalies: Figures 1,3,5,7
Northern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis). Mean heights are denoted by solid contours drawn at an interval of 6 dam. Anomaly contour interval is indicated by shading. Anomalies are calculated as departures from the 1981-2010 base period monthly means.

Sea-Level Pressure and Anomaly: Figures 2,4,6,8
Northern Hemisphere mean and anomalous sea level pressure (CDAS/Reanalysis). Mean values are denoted by solid contours drawn at an interval of 4 hPa. Anomaly contour interval is indicated by shading. Anomalies are calculated as departures from the 1981-2010 base period monthly means.
The month of August was characterized by above-average heights over Northwestern Canada, the East-central North Atlantic, and the region encompassing northern Europe and adjacent Northwestern Russia. Below-average heights were noted over the Gulf of Alaska, Greenland and the vicinity of the North Pole, and Mongolia (Figure 7). The SLP and anomaly field (Figure 8) largely mirrored the middle tropospheric circulation pattern.

The Tropics

ENSO-neutral conditions continued during July and August 2013. Sea surface temperatures (SST) remained near-average across the central and east-central equatorial Pacific, and below-average in the eastern equatorial Pacific. The latest monthly Nino 3.4 indices were -0.3 C for both July and August. The depth of the 20 C isotherm (oceanic thermocline) remained near-average in the central and east-central equatorial Pacific. Equatorial low level easterly trade winds remained near-average, and tropical convection remained enhanced over Indonesia and suppressed over the central equatorial Pacific.

The 2013 Atlantic hurricane season was unusually quiet during the months of June, July and August. Though six tropical storms had developed before the end of August, none reached hurricane intensity, which is very unusual. The dearth of hurricane activity in the Atlantic basin stands in sharp contrast with an active east Pacific hurricane season, with 11 tropical cyclones reported through the end of August, 5 of which reached hurricane intensity (Reference 3). Granted, the east Pacific hurricane season officially begins on May 15th, two weeks prior to the official onset of Atlantic hurricane season. Of particular interest is Tropical Storm Ivo, which weakened into a persistent remnant low pressure off the coast of Baja California. Moisture from the storm streamed northward across the Southwestern United States, triggering flash flooding in places such as western and central Arizona, southern California, southern Nevada and southern Utah.

References


2. Email communication with Rick Thoman (Climate Science and Services Manager, Fairbanks, AK)


Much of the information used in this article originates from the Climate Diagnostics Bulletin archive: (http://www.cpc.ncep.noaa.gov/products/CDB/CDB_Archive_html/CDB_archive.shtml)
Tropical Atlantic and Tropical East Pacific Areas
May through August 2013

Jorge Aguirre-Echevarria and Dan Mundell
Tropical Analysis and Forecast Branch
National Hurricane Center, Miami, Florida
NOAA National Center for Environmental Prediction

There were four non-tropical cyclone gale events that occurred between 1 May and 31 August 2013 in the area of high seas forecast responsibility (7°N to 31°N, west of 35°W including the Caribbean Sea and Gulf of Mexico) of the National Hurricane Center’s (NHC) Tropical Analysis and Forecast Branch (TAFB). Overall activity was quiet relative to the average activity of the last 10 years for the May through August period.

Gulf of Mexico Gale Warning

An unusually strong spring cold front moved over the warm Gulf of Mexico followed by cold air advection as strong high pressure built south over across the western half of the Gulf. The cold front reached from southwest Louisiana to Tampico Mexico by 00 UTC 3 May, and from just east of southeastern Louisiana to inland the northwest Yucatan peninsula and far southeast Gulf of Mexico by 18 UTC 3 May (Figures 1 and 2). Gale warnings were issued at 00 UTC.

May for areas behind the front as the cold air advection over the warm sea surface temperatures led to boundary layer instability resulting in the gale force winds. The strong high pressure weakened throughout the day of May 3rd. The weakening of the high pressure allowed the tight pressure gradient behind the front to slacken. This diminished the winds to below gale threshold shortly after 18 UTC on May 3rd.

May Gale Event in the Southwest N Atlantic

The gale event with the longest duration occurred from the 3-4th May 2013 when a tight pressure gradient set up between low pressure in the southeast Gulf of Mexico, and strong high pressure that built southward along the east coast of the United States. This induced gale force winds across a portion of TAFB’s southwest North Atlantic forecast zone, roughly from 28N to 31N and west of 77W. Gale warnings were first issued.
over a portion of the southwest North Atlantic waters at 00 UTC May 3rd when the low pressure over the southeast Gulf of Mexico continued northeastward towards the Florida Peninsula, and the gradient to its northeast began to tighten considerably (Figures 1 and 2). As a result, the Saint Augustine Beach Pier (SAUF1) Coastal Marine Automated Network (CMAN) site reported winds in the 25-30 kts range with gusts
Figure 3. Southwestern North Atlantic ASCAT wind retrieval valid at 0550 UTC 3 May 2013. Note the solid area of gale force winds along the far northwest boundary of TAFB’s forecast domain.

Figure 4. 25 km ASCAT scatterometer pass valid 0240 UTC 28 July 2013 showing minimal gale force winds inferred from the ASCAT low bias.
to 35 kts through the afternoon of May 4th. In addition, NOAA buoy 41012 near 30N80.5W or about 40 NM northeast of Saint Augustine reported northeast to east winds in the range of 30 to 35 kts with combined seas to 16 ft during this time period. A MetOP-A Advanced Scatterometer (ASCAT) pass from 0550 UTC 3 May captured the gale force winds over a portion of the southwest North Atlantic as it clearly noted east winds of 30-35 kts north of 28N between 77W and 81W (Figure 3). The pass noted winds of 40 kts north of about 29N between 79W and 80.5W. The ship Horizon Navigator (WPGK) reported estimated east winds of 40 kts near 28N78W at 1800 UTC that same day while buoy 41009 near 28N80W reported northeast winds of 35 kts. The tight pressure gradient began to slacken on May 4th as the low pressure over the southeast Gulf of Mexico tracked northeastward across central and northeast Florida forcing the Atlantic frontal boundary positioned to its east in a northward direction closer to the Atlantic waters off the northeast Florida coast. This synoptic set up helped break down the tight pressure gradient responsible for the gale force winds allowing them to diminish to below gale force at 00 UTC May 5th.

**Post Dorian Gale Event**

The remnants of Tropical Storm Dorian, analyzed as a tropical wave near 56W south of 23N on 28 July 2013, interacted with a high pressure ridge along 29N/30N. This resulted in a tight pressure gradient that initiated an area of gale force winds of 30-35 kts that commenced around 00 UTC Jul 28th across the wave axis. Figure 4 shows an ASCAT pass at 0240 UTC 28 July 2013 displaying these winds roughly over the area from 22N to 23N between 55W and 57W. The winds diminished to below gale force once the tropical wave began to weaken as it moved westward to near 67W by 12 UTC July 29th.

**Eastern North Pacific Ocean**

Two significant warning events not associated with tropical cyclones, and one gale warning which was associated with a circulation which eventually became a tropical cyclone, were documented primarily by scatterometer data in the May through August 2013 time period. Table 1a provides details on these brief gale wind events.

<table>
<thead>
<tr>
<th>Onset</th>
<th>Region</th>
<th>Peak Wind Speed</th>
<th>Gale Duration</th>
<th>Weather Forcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800 UTC 03 May</td>
<td>Gulf of Tehuantepec</td>
<td>40 kt</td>
<td>21 hr</td>
<td>Pressure Gradient</td>
</tr>
<tr>
<td>0600 UTC 14 May</td>
<td>Gulf of Tehuantepec</td>
<td>35 kt</td>
<td>6 hr</td>
<td>Pressure Gradient</td>
</tr>
<tr>
<td>1800 UTC 27 Aug</td>
<td>Tropical East Pacific</td>
<td>35 kt</td>
<td>30 hr</td>
<td>Pre-Tropical Storm Juliette</td>
</tr>
</tbody>
</table>

Late season Gulf of Tehuantepec wind events are typically initiated by strong northerly winds behind a cold front across the western Gulf of Mexico. This strong flow advects cold air southward, and funneling effects are most pronounced across the Isthmus of Tehuantepec. This was the case for both gale warnings issued for the Gulf of Tehuantepec in May 2013. The more significant of these two events commenced around 1800 UTC May 3rd. High pressure behind a strong cold front reaching the Bay of Campeche in the Gulf of Mexico and a broad monsoon trough across the eastern North Pacific produced a tight pressure gradient across
southern Mexico resulting in gale force northerly winds in the Gulf of Tehuantepec (Figure 5). High pressure behind the front shifted quickly eastward into the southeast Gulf of Mexico, which weakened the pressure gradient, and gale force winds ended around 1500 UTC on May 4th.

Figure 5. This METOP-A Advanced Scatterometer (ASCAT) pass at 0405 UTC 4 May 2013 captured a gale wind event in the Gulf of Tehuantepec near peak intensity. This image is an excellent example of what a high wind episode in the Gulf of Tehuantepec typically looks like. Highest winds are confined to a narrow band of north to northeast winds within 60 to 90 nm of the Isthmus of Tehuantepec. Wind speeds (and sea heights) will tend to diminish exponentially away from the core of the low level jet and fan outward away from the coast, as depicted here. Ships encountering high wind events in the Gulf of Tehuantepec are able to seek refuge in the regions of light and winds typically found on either side of the wind plume.
Introduction

The late winter to early spring period of March to mid-April 2013 featured a blocked pattern in which cyclones moving off the U.S. east coast or originating over the south central Atlantic waters moved erratically or stalled, impeded from moving northeast. Seven cyclones developed hurricane force winds through the third week of April but others came close. One of these developed a lowest central pressure of 948 hPa in the north central waters late in March, the deepest of the period in both the North Atlantic and North Pacific. The pattern became more progressive from May to August as cyclones followed a more northern track, but May and June remained active with several systems developing storm force winds, including an unseasonably strong cyclone in late June. July was the least active month, but activity started to pick up in late August with the approach of fall.

Tropical activity affecting in OPC’s marine area north of 31N consisted of two named cyclones which formed south of OPC’s marine area and moved into OPC’s far southwestern waters and either dissipated or became post tropical.

Tropical Activity

**Tropical Storm Andrea:** The first named tropical cyclone of 2013 originated in the Gulf of Mexico as a tropical storm, crossed northern Florida late on June 6, and maintained an intensity of 40 kts sustained winds with gusts to 50 kts while moving over coastal Georgia and the Carolinas on the 7th. The Sea-Land Navigator (WPGK) near 35N 73W reported south winds of 44 kts and 4.0 m seas (13 feet) at 1700 UTC on the 7th. One hour later the CSAV Laraquete (A8TI2) near 33.5N 76.3W reported south winds of 41 kts, and seas of 7.0 m (23 feet) at 1500 UTC on the 7th. Andrea then moved along the mid Atlantic coast as an extratropical gale late on the 7th, crossed the Gulf of Maine the next day and then passed east of Newfoundland on the 9th. As extratropical Andrea passed near Newfoundland the Statengracht (PHAQ) near 39N 54W encountered southwest winds of 45 kts at 1800 UTC on the 9th. Winds dropped below gale force as post-tropical Andrea approached Great Britain, where it dissipated June 12.

**Tropical Depression Dorian:** The second named tropical cyclone of 2013 originated as a tropical storm over the tropical Atlantic in July, degenerated into a remnant low on July 27th and then regenerated off the east coast of Florida as a tropical depression on the afternoon of August 2nd. Dorian entered OPC’s far southwestern waters near 32N 79W on the afternoon of the 3rd with maximum sustained winds of 25 kts with gusts to 35 kts, before being declared post-tropical six hours later. The remains of Dorian crossed Newfoundland as a gale late on the 5th and moved over the northern Atlantic waters with central pressures as low as 987 hPa east of Greenland on the 7th. The cyclone then slowly weakened and moved inland over southern Norway on the 12th.

Other Significant Events of the Period

**North Atlantic Storm, March 5-8:** The first two significant events of the period developed almost simultaneously, with the first occurring as an area of low pressure formed over the northern waters by March 5th and drifted southwest and then southeast over the next two days while spawning secondary slow moving cyclones between Greenland and Iceland (Figures 1 and 2). An associated frontal
system briefly developed hurricane force winds as it approached Iceland 0600 UTC on the 6th while another low formed on the front and moved southwest. A more significant low formed near 63N 30W 0000 UTC on the 7th and drifted toward Greenland while developing hurricane force winds on the west side, lasting until the 8th. The ASCAT (METOP-B) image in Figure 3 reveals winds of 50 to 70 kts in the northwest semicircle of the cyclone in the east Greenland waters (Figure 2). This is in an area typically with sparse ship reports. The cyclone drifted toward the southern tip of Greenland on the 8th with its winds dropping to gale force, while the primary low center, after developing a lowest central pressure of 964 hPa as a storm force low (Figure 2), drifted east and weakened to a gale approaching France on the 9th. Some ship reports taken in this event are listed in Table 1, mostly from the central North Atlantic.

### Southwestern North Atlantic Storm, March 6-9:
The second of a pair of early March events originated as a secondary low formed on a front over the mid Atlantic states of the U.S. (Figure 1) and moved offshore while developing storm force winds on the afternoon of March 6th. The cyclone moved slowly east northeast over the next two days while slowly intensifying, developing a lowest central pressure of 985 hPa near 39N 62W on the morning of the 8th. Blocked by strong high pressure to the north, the cyclone then drifted southeast and slowly weakened with its top winds lowering to gale force by the 10th. A broad area of gale to storm force easterly winds occurred between the high pressure and the cyclone and associated front, with some of these reports listed in Table 1. The cyclone subsequently passed south of 31N by the 13th with its winds diminishing to below gale force.

#### Table 1. Selected ship and buoy observations taken during the North Atlantic storm of March 5-8 and the southwestern North Atlantic storm of March 6-9, 2013.

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>POSITION</th>
<th>DATE/TIME (UTC)</th>
<th>WIND</th>
<th>SEA (m/f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC Monterey (D5BL4)</td>
<td>47N 36W</td>
<td>05/1500</td>
<td>N 45</td>
<td>6.5/21</td>
</tr>
<tr>
<td>CL Belgium (VRVQ9)</td>
<td>46N 45W,</td>
<td>06/0300, 07/0300</td>
<td>N 50, NW 55</td>
<td>7.6/25</td>
</tr>
<tr>
<td></td>
<td>49N 44W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maersk Wyoming (WKPF)</td>
<td>45N 29W</td>
<td>08/0000</td>
<td>NW 43</td>
<td>9.5/31</td>
</tr>
<tr>
<td>St. Louis Express (WDD3825)</td>
<td>39N 55W</td>
<td>08/0200</td>
<td>E 45</td>
<td>11.6/38</td>
</tr>
<tr>
<td></td>
<td>40N 54W</td>
<td>08/0700</td>
<td>E 45</td>
<td>12.2/40</td>
</tr>
<tr>
<td></td>
<td>40N 53W</td>
<td>08/0900</td>
<td>E 45</td>
<td>12.2/40</td>
</tr>
<tr>
<td></td>
<td>41N 49W</td>
<td>08/2200</td>
<td>E 35</td>
<td>12.8/42</td>
</tr>
<tr>
<td>Hanjin Madrid (DHQS)</td>
<td>43N 58W</td>
<td>08/1800</td>
<td>E 50</td>
<td>10.7/35</td>
</tr>
<tr>
<td>Sea-Land Meteor (WDD3826)</td>
<td>42N 65W</td>
<td>09/0600</td>
<td>NE 50</td>
<td>5.0/16</td>
</tr>
<tr>
<td>Buoy 44024</td>
<td>42.3N 65.9W</td>
<td>08/2100, 08/2200</td>
<td>NE 45 G54 NE 40 G49</td>
<td>10.0/33</td>
</tr>
<tr>
<td>Buoy 44009</td>
<td>38.5N 74.7W</td>
<td>07/0100, 06/2300</td>
<td>N 45 G54 Maximum</td>
<td>7.0/23</td>
</tr>
<tr>
<td>Buoy 44066</td>
<td>39.6N 72.6W</td>
<td>07/0600, 07/0800</td>
<td>N40 G52 Maximum</td>
<td>8.8/29</td>
</tr>
<tr>
<td>Buoy 44150</td>
<td>42.3N 64.0W</td>
<td>09/0200</td>
<td>Maximum</td>
<td>9.5/31</td>
</tr>
</tbody>
</table>

Southwestern North Atlantic Storm, March 21-22: This cyclone originated near the north Florida coast late on March 20th and developed explosively in the twenty four hour period ending at 0600 UTC on the 22nd, when its central pressure fell 43 hPa (Figure 4). This is an impressive rate of intensification for that low latitude, more than twice what is needed for a “bomb” (Sanders, Frederick and Gyakum, 1980). The cyclone is shown at maximum intensity in the second part of Figure 4 when it briefly developed hurricane force winds before moving inland over the Atlantic provinces of Canada and weakening. The Atlantic Compass (SKUN) reported northeast winds of 65 kts near 45N 61W at 0600 UTC on the 22nd. The ship
BATEU01 (47N 57W) encountered southeast winds of 55 kts two hours later. Buoy 44139 (44.2N 57.1W) reported east winds of 43 kts with gusts to 54 kts and 5.0 m seas (16 feet) at 0300 UTC on the 22nd. The cyclone weakened inland with its winds diminishing to gale force the next day, and then dissipated over New Brunswick late on March 23rd.

North Atlantic Storm, March 25-31: This major cyclone originated as a low pressure wave (1000 hPa) over the southeastern U.S. on the morning of the 24th and gradually intensified while tracking offshore, taking almost four days to reach its lowest central pressure of 948 hPa near 51N 39W at 0600 UTC on the 28th. Figure 5 depicts a period of most rapid development, with OPC analyzing this system as a hurricane force low at 0600 UTC on the 27th. An ASCAT (METOP-B) pass from 1205 UTC on the 27th, six hours later, revealed a swath of west winds to 55 kts on the south side of the center with only partial coverage. The Maersk Driscoll (A8IY3) near 51N 30W reported southeast winds of 50 kts and 5.8 m seas (19 feet) at 1500 UTC on the 27th. The APL Shanghai (A8SN5) near 52N 23W encountered southeast winds of 50 kts and 9.0 m seas (30 feet) three hours later, and then at 0000 UTC on the 28th, 9.8 m seas (32 feet) near 52N 26W. The cyclone subsequently stalled near 51N 41W and began to weaken on the 28th and 29th before drifting southeast with its winds lowering to gale force on the 31st. The cyclone became absorbed by another system passing to the southeast on April 2nd.

North Atlantic Storm, Greenland area, April 3-6: The weaker of two hurricane force lows that formed in early April originated as a new low near 40N 57W late on April 2 and tracked north northeast over the next two days before turning northwest when approaching Greenland. It developed a lowest central pressure of 987 hPa near 59N 39W and hurricane force winds at 1800 UTC on the 5th. The first part of Figure 6 shows the cyclone six hours later before it weakened in the Davis Strait the next day. The OceanSat2 (OSCAT) image in Figure 7 reveals 60 kts west to northwest winds near the southern tip of Greenland with many of the strongest winds detected in the later pass or the 6th.

North Atlantic Storm, April 5-8: A frontal wave of low pressure moved northeast out of the Gulf of Mexico early on April 4th, developed storm force winds when passing near the island of Newfoundland early on the 6th and hurricane force winds the next day. Figure 6 shows the final thirty six hours of development. The central pressure fell 31 hPa in the twenty four hour period ending at 0000 UTC April 7th and the lowest central pressure of 964 hPa occurred six hours later. Hibernia Platform (VEP717, 46.7N 48.7W) reported southwest winds of 66 kts at its anemometer height of 139 m at 1800 UTC on the 6th, while Terra Nova FPSO (VCXF, 46.4N 48.4W) encountered south winds of 50 kts at a height of 53 m. Hibernia reported seas as high as 8.2 m (27 feet) at 1500 UTC on the 7th. The Hanjin Phoenix (A8CN9) near 44N 51W reported south winds of 45 kts and 8.5 m seas (28 feet) at 1800 UTC on the 6th. The strongest winds as detected in ASCAT imagery were as high as 50 to 55 kts on the morning of the 7th both on the south and north sides of the cyclone, similar to Figure 9 for the storm that followed, and passed just north of the Grand Banks platforms. The cyclone subsequently tracked east and began a weakening trend late on the 7th and passed east of the North Sea late on the 12th (Figure 8).

North Atlantic Storm, April 12-14: The next developing storm originated as a low pressure wave south of Nova Scotia near 40N and rapidly intensified over the central waters (Figure 8), with the central pressure falling 42 hPa in the twenty four hour period ending at 0600 UTC on the 13th. It developed a lowest central pressure of 950 hPa six hours later, making it the second most intense of the period. At 2000 UTC on the 12th the Maersk Ohio (KABP) near 44N 47W reported west winds of 45 kts and 9.5 m seas (31 feet), followed by the Integrity (WDC6925) ten hours later with a report of northwest winds of 50 kts and 6.5 m seas (21 feet) near 50N 31W. The two ASCAT (METOP-B) passes in Figure 9 show swaths of 50 kts winds both north and south of the cyclone center. The system then passed near the British Isles on the 14th with its top winds lowering to gale force, and then well north of Scotland late on the 15th.

North Atlantic Storm, Greenland area, April 17-20: A developing low originating inland over eastern Canada early on the 16th moved across the Labrador Sea and into the east Greenland waters on the 19th as depicted in Figure 10, and was the last analyzed hurricane force system of the winter. The strongest winds of this cyclone appear in the form of a westerly jet off the southern tip of Greenland as depicted in Figure 11, with winds detected by satellite up to 60 kts, while the cyclone center was to the north in the east Greenland waters. The system turned eastward away from Greenland on the 20th with winds diminishing to gale force, and then dissipated east of Iceland the next day.
Northeastern Atlantic Storm, May 1-2: Low pressure originating south of Nova Scotia on April 26th moved northeast across the Atlantic, developing storm force winds as it passed through the Norwegian Sea on the 1st and 2nd and a lowest central pressure of 994 hPa near 66N 5E. The Aleksandr Suvorov (UCAD) near 62N 4E encountered south winds of 50 kts at 1200 UTC May 1st. At 0900 UTC on the 2nd the platform LF3F (64.3N 7.9E) reported southwest winds of 40 kts and 7.5 m seas (25 feet).

North Atlantic Storms, Greenland area, May 1-7: A developing storm moved from northeastern Canada north through the Davis Strait late on May 1st and on the 2nd. Although the cyclone developed a lowest central pressure of only 1002 hPa, the Mary Artica (BATEU00) at 0900 UTC on the 2nd reported south winds of 58 kts near the Greenland coast at 67N 54W. This in turn spawned a new cyclone between Greenland and Iceland which developed a central pressure of 982 hPa and, briefly, storm force winds the next day. This cyclone then moved east of Iceland late on the 3rd as a gale but two new centers formed between Greenland and Iceland on the 4th with storm force winds. A western center at 1200 UTC on the 4th with a 981 hPa central pressure developed 50 kts north winds off the east Greenland coast as detected in ASCAT imagery. As the complex system moved east on the 5th an ASCAT (METOP-B) pass at 1200 UTC on the 5th detected northeast winds of 50 kts to the northwest of Iceland, before winds weakened to gale force late on the 5th. Another storm force low moved north through the Davis Strait on May 6th and early on the 7th with a central pressure as low as 988 hPa late on the 6th.

North Atlantic Storm, May 11-12: This cyclone moved east across the far northwestern waters on the 9th as a gale, and into the east Greenland waters on the 10th where it stalled and developed storm force winds late on the 11th. These took the form of a westerly jet off the southern tip of Greenland as detected in ASCAT imagery near 0000 UTC on the 12th (similar to Figure 11 but with winds to 50 kts). The ship BATEU05 reported northwest winds of 40 kts near 60N 49W at 1800 UTC on the 11th. The cyclone developed a lowest central pressure of 978 hPa as it reformed between Scotland and Iceland late on the 12th then stalled, before becoming absorbed by a second low coming from the south on the 15th.

North Atlantic Storm, Greenland area, May 17-19: The development of this cyclone from a low pressure wave south of Greenland is depicted in Figure 12. The second part of Figure 12 shows the cyclone with its lowest central pressure. The G.O. Sars (LMEL) near 60N 40W reported a southwest wind of 62 kts at 1700 UTC on the 18th. ASCAT (METOP-B) imagery available near this time showed satellite measured winds of 50 kts in this area. The cyclone then moved slowly northeast between Greenland and Iceland late on the 19th and the 20th.

North Atlantic Storms, Greenland area, North Sea, May 22-23: Low pressure originating near 40N 47W early on the 20th moved north and developed storm force winds on the afternoon of the 22nd as the center passed near 58N 47W. Although the central pressure was a modest 1000 hPa, OceanSat (OSCAT) imagery from 1522 UTC on the 22nd revealed a northeast wind maximum of 50 kts near the southern tip of Greenland. The low stalled in this area and then dissipated late on the 23rd. Well to the east, blocking high pressure to the north forced an unusual track of a low pressure system moving westward out of the Baltic Sea into the North Sea late on the 22nd and early on the 23rd, developing storm force winds with a 992 hPa central pressure. Buoy 62140 (57.3N 1.3E) reported north winds of 48 kts at 1200 UTC on the 23rd, while buoy 62153 (57.3N 2.0E) reported north winds of 39 kts and 7.0 m seas (23 feet). The ship ZQSD5 (58N 1E) encountered 9.0 m seas (30 feet) one hour later. The cyclone moved southwest in the North Sea on the 23rd and weakened, and dissipated over northern France the next day.

Northeastern Atlantic Storm, May 25-27: An unseasonably strong low developed in the northeastern waters late in May, originating near the Labrador coast on the 24th. It developed a lowest central pressure of 972 hPa as depicted in Figure 13, after a pressure fall of 30 hPa in twenty four hours. The Excalibur (ONCE) near 55N 16W reported west winds of 40 kts and 5.5 m seas (18 feet) at 1800 UTC on the 26th. The ASCAT (METOP-B) imagery in Figure 14 reveals a large area of winds 30 to as high as 45 kts on the southwest and west sides of the cyclone with the center near the upper right edge of the image. The cyclone subsequently drifted southeast and dissipated near Ireland on the 28th.

North Atlantic Storm, June 1-3: An unusually intense low for early June developed over the north central waters, originating as a new low near the northern Labrador coast early on May 31st and moving east over the next three days. It developed a lowest central pressure of 976 hPa near 55N 41W...
at 1200 UTC June 2nd and storm force winds. An ASCAT (METOP-B) pass about two hours later revealed widespread satellite detected winds of 30 kts to as high as 45 kts around the west semicircle of the cyclone, similar to Figure 14 for the late May event. The ship BATEU04 (59N 43W) encountered north winds of 40 kts at 1900 UTC on the 2nd. The Trinity Glory (3FMV6) near 47N 35W reported northwest winds of 40 kts and 7.3 m seas (24 feet) at 0600 UTC on the 3rd. The system began to weaken on the 3rd and turned north into the east Greenland waters, where it dissipated late on the 5th.

North Atlantic Storm, June 20-21: A storm packing unusually strong winds for late June developed from a low pressure wave south of Nova Scotia over a thirty six hour period as depicted in Figure 15. The cyclone is shown at maximum intensity in the second part of Figure 15. The ASCAT image in Figure 16 reveals satellite detected winds of up to 55 kts on the south side. Due to the low bias of the imagery based on 10 m height and averaging, top winds in this cyclone briefly approached hurricane force. The Norwegian Dawn (C6FT7) near 36N 67W reported southwest winds of 45 kts at 2000 UTC on the 19th. Hibernia (VEP717, 46.7N 48.7W) reported southwest winds of 57 kts at 0600 UTC on the 20th. Later, the ship BATFR52 (49N 4W) encountered southwest winds of 45 kts at 1400 UTC on the 22nd. The cyclone subsequently moved east northeast and weakened, passing over Scotland late on the 22nd and then inland over southern Norway two days later.

North Atlantic Storm, Greenland area, June 25-26: The next significant cyclone followed a more northern track, moving from the southern Labrador coast on the afternoon of the 24th to east of Greenland late on the 25th and early on the 26th, where it developed storm force winds and a lowest central pressure of 979 hPa. The Arni Fridriksson (TFNA) reported west winds of 45 kts near 59N 40W at 2100 UTC on the 25th. An ASCAT (METOP-B) pass from 2232 UTC on the 25th detected a small area of north winds of 50 kts northwest of the center. The cyclone then passed between Iceland and Greenland late on the 26th with its winds diminishing to gale force.

North Atlantic Storm, August 19-20: This late summer development affected mainly the northwestern waters and Greenland area, originating over northeastern Canada late on the 17th and moving over the Labrador Sea on the morning of the 19th where it developed storm force winds. The cyclone developed a lowest central pressure of 989 hPa near 58N 44W at 0600 UTC on the 20th, passed near the southern tip of Greenland shortly thereafter and then weakened to a sub gale force low while passing between Greenland and Iceland late on the 21st. The Mary Artica (BATEU00) near 59.5N 42W encountered north winds of 50 kts at 1500 UTC on the 20th.

North Atlantic Storm, August 22-23: A low pressure wave moved off the mid Atlantic coast of the U.S. on the 18th, developed gale force winds while passing south of the island of Newfoundland early on the 20th and then briefly storm force conditions with a lowest central pressure of 978 hPa while passing near 59N 21W 0000 UTC August 23rd. The Atlantic Compass (SKUN) near 58N 24W reported northwest winds of 50 kts at that time. The cyclone then weakened to below gale force while passing northeast of Iceland early on the 24th.

References


National Weather Service
VOS Program New Recruits:
July 1 through November 30, 2013

The Cooperative Ship Reports can now be found online by clicking here.
Points of Contact
U.S. Port Meteorological Officers

HEADQUARTERS

John Wasserman
Voluntary Observing Ship Program Manager
National Data Buoy Center
Building 3203
Stennis Space Center, MS 39529-6000
Tel: 228-688-1818
Fax: 228-688-3923
E-mail: john.wasserman@noaa.gov

Paula Rychtar
Voluntary Observing Ship Operations Manager
National Data Buoy Center
Building 3203
Stennis Space Center, MS 39529-6000
Tel: 228-688-1457
Fax: 228-688-3923
E-mail: paula.rychtar@noaa.gov

ATLANTIC PORTS

David Dellinger, PMO Miami, Florida
National Weather Service, NOAA
Post Office Address for Small Packages and USPS Mail:
RO. Box 350067
Fort Lauderdale, FL 33335-0067
FEDEX/UPS/DHL Package delivery address and physical address:
2550 Eisenhower Blvd, Suite 312
Port Everglades, FL 33316
Tel: 954-463-4271
Fax: 954-462-8963
E-mail: david.dellinger@noaa.gov

Robert Niemeyer, PMO Jacksonville, Florida
National Weather Service, NOAA
13701 Fang Road
Jacksonville, FL 32218-7933
Tel: 904-607-3219
Fax: 904-741-0078
E-mail: rob.niemeyer@noaa.gov

Tim Kenefick, PMO Charleston, South Carolina
NOAA Coastal Services Center
2234 South Hobson Avenue
Charleston, SC 29405-2413
Tel: 843-709-0102
Fax: 843-740-1224
E-mail: timothy.kenefick@noaa.gov

Peter Gibino, PMO Norfolk, Virginia
National Weather Service, NOAA
P. O. Box 1492
Grafton, VA 23892
Tel: 757-617-0879
E-mail: peter.gibino@noaa.gov

Lori Evans, PMO Baltimore, Maryland
National Weather Service, NOAA
P. O. Box 3667
Frederick, MD 21705-3667
For UPS/FEDEX delivery:
1306 Baker Pl E
Apt 11
Frederick, MD 21702
Tel: 443-642-0760
Fax: 410-633-4713
E-mail: lori.evans@noaa.gov

Jim Luciani, PMO New York, New York
New York/New Jersey National Weather Service, NOAA
P. O. Box 366
Flemington, NJ 08822
Tel: 908-217-3477
E-mail: james.luciani@noaa.gov

GREAT LAKES PORTS

Ron Williams, PMO Duluth, Minnesota
National Weather Service, NOAA
5027 Miller Trunk Highway
Duluth, MN 55811-1442
Tel 218-729-0651
Fax 218-729-0690
E-mail: ronald.williams@noaa.gov
GULF OF MEXICO PORTS

VACANT
PMO New Orleans, Louisiana
62300 Airport Rd.
Slidell, LA 70460-5243
Tel:
Fax:
E-mail:

Chris Fakes, PMO Houston, Texas
National Weather Service, NOAA
1353 FM 646 W
Suite 202
Dickinson, TX 77539
Tel: 281-534-2640
Cell: 281-703-8113
Fax: 281-534-4308
E-mail: chris.fakes@noaa.gov

PACIFIC PORTS

Derek LeeLoy, PMO Honolulu, Hawaii
Ocean Services Program Coordinator
National Weather Service Pacific Region HQ
Grosvenor Center, Mauka Tower
737 Bishop Street, Suite 2200
Honolulu, HI 96813-3201
Tel: 808-532-6439
Fax: 808-532-5569
E-mail: derek.leeloy@noaa.gov

Brian Holmes, PMO Los Angeles, California
National Weather Service, NOAA
501 West Ocean Blvd., Room 4480
Long Beach, CA 90802-4213
Tel: 562-980-4090
Fax: 562-436-1550
E-mail: brian.holmes@noaa.gov

VACANT
PMO Oakland/San Francisco, California
National Weather Service, NOAA
1301 Clay Street, Suite 1190N
Oakland, CA 94612-5217
Tel: 510-637-2960
Fax: 510-637-2961
E-mail:

Matt Thompson, PMO Seattle, Washington
National Weather Service, NOAA
7600 Sand Point Way, N.E.,
BIN C15700
Seattle, WA 98115-6349
Tel: 206-526-6100
Fax: 206-526-6904
E-mail: matthew.thompson@noaa.gov

Richard Courtney, PMO Kodiak, Alaska
National Weather Service, NOAA
600 Sandy Hook Street, Suite 1
Kodiak, AK 99615-6814
Tel: 907-487-2102
Fax: 907-487-9730
E-mail: richard.courtney@noaa.gov

Larry Hubble, PMO Anchorage, Alaska
National Weather Service Alaska Region
222 West 7th Avenue #23
Anchorage, AK 99513-7575
Tel: 907-271-5135
Fax: 907-271-3711
E-mail: larry.hubble@noaa.gov
U.S. Coast Guard
AMVER Center

Ben Strong
AMVER Maritime Relations Officer,
United States Coast Guard
Battery Park Building
New York, NY 10004
Tel: 212-668-7762
Fax: 212-668-7684
E-mail: bmstrong@batteryny.uscg.mil

SEAS Field Representatives

AOML SEAS PROGRAM MANAGER

Dr. Gustavo Goni
AOML
4301 Rickenbacker Causeway
Miami, FL 33149-1026
Tel: 305-361-4339
Fax: 305-361-4412
E-mail: gustavo.goni@noaa.gov

DRIFTER PROGRAM MANAGER

Dr. Rick Lumpkin
AOML/PHOD
4301 Rickenbacker Causeway
Miami, FL 33149-1026
Tel: 305-361-4513
Fax: 305-361-4412
E-mail: rick.lumpkin@noaa.gov

ARGO PROGRAM MANAGER

Dr. Claudia Schmid
AOML/PHOD
4301 Rickenbacker Causeway
Miami, FL 33149-1026
Tel: 305-361-4313
Fax: 305-361-4412
E-mail: claudia.schmid@noaa.gov

GLOBAL DRIFTER PROGRAM

Shaun Dolk
AOML/PHOD
4301 Rickenbacker Causeway
Miami, FL 33149-1026
Tel: 305-361-4446
Fax: 305-361-4366
E-mail: shaun.dolk@noaa.gov

NORTHEAST ATLANTIC SEAS REP.

Jim Farrington
SEAS Logistics/AMC
439 West York Street
Norfolk, VA 23510
Tel: 757-441-3062
Fax: 757-441-6495
E-mail: james.w.farrington@noaa.gov

SOUTHWEST PACIFIC SEAS REP.

Carrie Wolfe
Southern California Marine Institute
820 S. Seaside Avenue
San Pedro, Ca 90731-7330
Tel: 310-519-3181
Fax: 310-519-1054
E-mail: cwolfe@csulb.edu

SOUTHEAST ATLANTIC SEAS REP.

Francis Bringas
AOML/GOOS Center
4301 Rickenbacker Causeway
Miami, FL 33149-1026
Tel: 305-361-4332
Fax: 305-361-4412
E-mail: francis.bringas@noaa.gov

PACIFIC NORTHWEST SEAS REP.

Steve Noah
SEAS Logistics/PMC
Olympic Computer Services, Inc.
Tel: 360-385-2400
Cell: 425-238-6501
E-mail: snoah@olycomp.com or karsteno@aol.com

Other Port Meteorological Officers

ARGENTINA

Mario J. Garcia
Jefe del Dto. Redes
Servicio Meteorológico Nacional
25 de Mayo 658 (C1002ABN)
Buenos Aires
Argentina
Tel: +54-11 4514 1525
Fax: +54-11 5167 6709
E-mail: garcia@meteofa.mil.ar

AUSTRALIA

Head Office

Graeme Ball, Mgr.
PMO Coordinator
Marine Operations Group
Bureau of Meteorology
GPO Box 1289
Melbourne, VIC 3001, Australia
Tel: +61-3 9669 4203
Fax: +61 3 9669 4168
E-mail: smmo@bom.gov.au
Group E-mail: marine_obs@bom.gov.au

Fremantle

Craig Foster, PMA
Port Meteorological Officer Fremantle,
Bureau of Meteorology
PO Box 1370
Perth, WA 6872, Australia
Tel: +61-8 9263 2292
Fax: +61 8 9263 2297
E-mail: pma.fremantle@bom.gov.au

Melbourne

Brendan Casey, PMA
c/o Bureau of Meteorology
Port Meteorological Officer
Melbourne, Bureau of Meteorology,
GPO Box 1289 Melbourne, VIC 3001, Australia
Tel: +61-3 9669 4236
Fax: +61-3 9669 4168
E-mail: pma.melbourne@bom.gov.au
Sydney

Matt Dunn, PMO
c/o Bureau of Meteorology
Port Meteorological Officer Sydney
Bureau of Meteorology
GPO Box 413
Darlinghurst, NSW 1300
Australia
Tel: +61 2 9296 1553
Fax: +61 2 9296 1648
E-mail: pma.sydney@bom.gov.au

Nova Scotia

Martin MacLellan
A/Superintendent Port Meteorology & Data
Buoy Program
Environment Canada
275 Rocky Lake Rd, Unit 8B
Bedford, NS
B4A 2T3
Office: (902) 426-6616
Cell: (902) 483-3723
Fax: (902) 426-6404

Ontario

Tony Hilton, Supervisor PMO;
Shawn Ricker, PMO
Environment Canada
Meteorological Service of Canada
100 East Port Blvd.
Hamilton, Ontario L8H 7S4 Canada
Tel: +1-905 312 0900
Fax: +1-905 312 0730
E-mail: tony.hilton@ec.gc.ca
ricker.shawn@ec.gc.ca

Quebec

Erich Gola, PMO
Meteorological Service of Canada
Quebec Region
Service météorologique du Canada
Environnement Canada
800 rue de la Gauchetière Ouest, bureau 7810
Montréal (Québec) H5A 1L9 Canada
Tel: +1-514 283-1644
Cel: +1-514 386-8269
Fax: +1-514 496-1867
E-mail: erich.gola@ec.gc.ca

Points of Contact

British Columbia

Bruce Lohnes, Monitoring Manager
Environment Canada
Meteorological Service of Canada
140-13160 Vanier Place
Richmond, British Columbia V6V 2J2
Canada
Tel: +1-604-664-9188
Fax: +1604-664-4094
E-mail: _bruce.lohnes@ec.gc.ca

Newfoundland

Andrew Dwyer, PMO
Environment Canada
6 Bruce Street
St John’s, Newfoundland A1N 4T3
Canada
Tel: +1-709-772-4798
Fax: +1-709-772-5097
E-mail: andre.dwyer@ec.gc.ca

Nova Scotia

Martin MacLellan
A/Superintendent Port Meteorology & Data
Buoy Program
Environment Canada
275 Rocky Lake Rd, Unit 8B
Bedford, NS
B4A 2T3
Office: (902) 426-6616
Cell: (902) 483-3723
Fax: (902) 426-6404

Ontario

Tony Hilton, Supervisor PMO;
Shawn Ricker, PMO
Environment Canada
Meteorological Service of Canada
100 East Port Blvd.
Hamilton, Ontario L8H 7S4 Canada
Tel: +1-905 312 0900
Fax: +1-905 312 0730
E-mail: tony.hilton@ec.gc.ca
ricker.shawn@ec.gc.ca

Quebec

Erich Gola, PMO
Meteorological Service of Canada
Quebec Region
Service météorologique du Canada
Environnement Canada
800 rue de la Gauchetière Ouest, bureau 7810
Montréal (Québec) H5A 1L9 Canada
Tel: +1-514 283-1644
Cel: +1-514 386-8269
Fax: +1-514 496-1867
E-mail: erich.gola@ec.gc.ca

CHINA

YU Zhaoguo
Shanghai Meteorological Bureau
166 Puxi Road
Shanghai, China
CROATIA

Port of Split

Captain Zeljko Sore
Marine Meteorological Office-Split
PO. Box 370
Glagoljaska 11
HR-21000 Split
Croatia
Tel: +385-21 589 378
Fax: +385-21 591 033 (24 hours)
E-mail: sore@cirus.dhz.hr

Port of Rijeka

Smiljan Viskovic
Marine Meteorological Office-Rijeka
Riva 20
HR-51000 Rijeka
Croatia
Tel: +385-51 215 548
Fax: +385-51 215 574

DENMARK

Cmdr Roi Jespersen, PMO &
Cmdr Harald R. Joensen, PMO
Danish Meteorological Inst., Observation Dept
Surface and Upper Air Observations Division
Lyngbyvej 100
DK-2100 Copenhagen
Denmark
Tel: +45 3915 7337
Fax: +45 3915 7390
E-mail: rj@DMI.dk
hrj@DMI.dk

FALKLANDS

Captain R. Gorbutt, Marine Officer
Fishery Protection Office
Port Stanley
Falklands
Tel: +500 27260
Fax: +500 27265
Telex: 2426 FISHDIR FK

FRANCE

Headquarters

André Péries, PMO Supervisor
Météo-France DSO/RESO/PMO
42, Avenue Gustave Coriolis
31057 Toulouse Cédex
France
Tel: +33-5 61 07 98 54
Fax: +33-5 61 07 98 69
E-mail: andre.peries@meteo.fr

Boulogne-sur-mer

Gérard Doligez
Météo-France DDM62
17, boulevard Sainte-Beuve
62200 Boulogne-sur-mer
France
Tel: +33-3 21 10 85 10
Fax: +33-2 21 33 33 12
E-mail: gerard.doligez@meteo.fr

Brest

Louis Stéphan, Station Météorologique
16, quai de la douane29200 Brest
France
Tel: +33-2 98 44 60 21
Fax: +33-2 98 44 60 21

La Réunion

Yves Morville, Station Météorologique
Port Réunion
France
Fax: +262 262 921 147
Telex: 916797RE
E-mail: dirre@meteo.fr
meteo.france.leport@wanadoo.fr

Le Havre

Andre Devatine, Station Météorologique
Nouveau Sémaphore
Quai des Abeilles
76600 Le Havre
France
Tel: +33-2 32 74 03 65
Fax: +33 2 32 74 03 61
E-mail: andre.devatine@meteo.fr
Points of Contact

Marseille

Michel Perini, PMO
Météo-France / CDM 13
2A BD du Château-Double
13098 Aix en Provence Cédex 02
France
Tel: +00 33 (0)4 42 95 25 42
Fax: +00 33 (0)4 42 95 25 49
E-mail: michel.perini@meteo.fr

Montoir de Bretagne

Jean Beaujard, Station Météorologique
Aérodomne de Saint-Nazaire-Montoir
44550 Montoir de Bretagne
France
Tel: +33-2 40 17 13 17
Fax: +33-2 40 90 39 37

New Caledonia

Henri Lévèque, Station Météorologique
BP 151
98845 Noumea Port
New Caledonia
France
Tel: +687 27 30 04
Fax: +687 27 42 95

GERMANY

Headquarters

Volker Weidner, PMO Advisor
Deutscher Wetterdienst
Bernhard-Nocht-Strasse 76
D-20359 Hamburg
Germany
Tel: +49-40 6690 1410
Fax: +49-40 6690 1496
E-mail: pmo@dwd.de

Bremerhaven

Henning Hesse, PMO
Deutscher Wetterdienst
An der Neuen Schleuse 10b
D-27570 Bremerhaven
Germany
Tel: +49-471 70040-18
Fax: +49-471 70040-17
E-mail: pmo@dwd.de

Hamburg

Horst von Bargen, PMO
Matthias Hoigt
Susanne Ripke
Deutscher Wetterdienst
Met. Hafendienst
Bernhard-Nocht-Str. 76
D - 20359 Hamburg
Tel: +49 40 6690 1412/1411/1421
Fax: +49 40 6690 1496
E-mail: pmo@dwd.de

Rostock

Christel Heidner, PMO
Deutscher Wetterdienst
Seestr. 15a
D - 18119 Rostock
Tel: +49 381 5438830
Fax: +49 381 5438863
E-mail: pmo@dwd.de

Gilbraltar

Principal Meteorological Officer
Meteorological Office
RAF Gilbraltar BFPO 52
Gilbraltar
Tel: +350 53419
Fax: +350 53474

GREECE

Michael Myrsilidis
Marine Meteorology Section
Hellenic National Meteorological Service (HNMS)
El, Venizelou 14
16777 Hellinikon
Athens
Greece
Tel: +30-10 9699013
Fax: +30-10 9628952, 9649646
E-mail: mmirsi@hnms.gr

HONG KONG, CHINA

Wing Tak Wong, Senior Scientific Officer
Hong Kong Observatory
134A Nathan Road
Kowloon
Hong Kong, China
Tel: +852 2926 8430
Fax: +852 2311 9448
E-mail: wtwong@hko.gov.hk
ICELAND

Hreinn Hjartarson, Icelandic Met. Office
Bústadavegur 9
IS-150 Reykjavik
Iceland
Tel: +354 522 6000
Fax: +354 522 6001
E-mail: hreinn@vedur.is

INDIA

Calcutta

Port Meteorological Office
Alibnagar, Malkhana Building
N.S. Dock Gate No. 3
Calcutta 700 043
India
Tel: +91-33 4793167

Chennai

Port Meteorological Office
10th Floor, Centenary Building
Chennai Port Trust, Rajaji Road
Chennai 600 001
India
Tel: +91-44 560187

Fort Mumbai

Port Meteorological Office
3rd Floor, New Labour Hamallage Building
Yellow Gate, Indira Doct
Fort Mumbai 400 001
India
Tel: +91-2613733

Goa

PMO, Port Meteorological Liaison Office
Sada, R.O., Head Land Sada
Goa 403 804
India
Tel: +91-832 520012

Kochi

Port Meteorological Office
Cochin Harbour, North End, Wellington Island
Kochi 682 009
India
Tel: +91-484 667042

Visakhapatnam

Port Meteorological Office
c/o The Director, Cyclone Warning Centre
Chinna Waltair
Visakhapatnam 530 017, Andhra Pradesh
India
Tel: +91-891 746506

INDONESIA

Belawan

Stasiun Meteorologi Maritim Belawan
Jl. Raya Pelabuhan III
Belawan - 20414
Indonesia
Tel: +62-21 6941851
Fax: +62-21 6941851

Bitung

Stasiun Meteorologi Maritim Bitung
Jl. Kartini No. 1
Bitung - 95524
Indonesia
Tel: +62-438 30989
Fax: +62-438 21710

Jakarta

Mochamad Rifangi
Meteorological and Geophysical Agency
Jl. Angkasa I No. 2 Kemayoran
Jakarta - 10720
Indonesia
Tel: +62-21 4246321
Fax: +62-21 4246703

Stasiun Meteorologi Maritim Tanjung Priok
Jl. Padamarang Pelabuhan
Tanjung Priok
Jakarta - 14310
Indonesia
Tel: +62-21 4351366
Fax: +62-21 490339

Makassar

Stasiun Meteorologi Maritim Makassar
Jl. Sabutung I No. 20 Paotere
Makassar
Indonesia
Tel: +62-411 319242
Fax: +62-411 328235
Semarang

Stasiun Meteorologi Maritim Semarang
Jl. Deli Pelabuhan
Semarang - 50174
Indonesia
Tel: +62-24 3549050
Fax: +62-24 3559194

Surabaya

Stasiun Meteorologi Maritim Surabaya
Jl. Kalimas baru No. 97B
Surabaya - 60165
Indonesia
Tel: +62-31 3291439
Fax: +62-31 3291439

IRELAND

Cork

Brian Doyle, PMO
Met Eireann
Cork Airport
Cork
Ireland
Tel: +353-21 4917753
Fax: +353-21 4317405

Dublin

Columba Creamer, Marine Unit
Met Eireann
Glasnevin Hill
Dublin 9
Ireland
Tel: +353 1 8064228
Fax: +353 1 8064247
E-mail: columbia.creamer@met.ie

ISRAEL

Ashdod

Aharon Ofir, PMO
Marine Department
Ashdod Port
Tel: 972 8 8524956

Haifa

Hani Arbel, PMO
Haifa Port
Tel: 972 4 8664427

JAPAN

Headquarters

Dr. Kazuhiro Hayashi, Scientific Officer
Marine Div., Climate and Marine Dept.
Japan Meteorological Agency
1-3-4 Otemachi, Chiyoda-ku
Tokyo, 100-8122
Japan
Tel: +81-3 3212 8341 ext. 5144
Fax: +81-3 3211 6908
Email: hayashik@met.kishou.go.jp
VOS@climar.kishou.go.jp

Kobe

Port Meteorological Officer
Kobe Marine Observatory
1-4-3, Wakinohamakaigan-dori, Chuo-ku
Kobe 651-0073
Japan
Tel: +81-78 222 8918
Fax: +81-78 222 8946

Nagoya

Port Meteorological Officer
Nagoya Local Meteorological Observatory
2-18, Hiyori-ho, Chigusa-ku
Nagoya, 464-0039
Japan
Tel: +81-52 752 6364
Fax: +81-52 762-1242

Yokohama

Port Meteorological Officer
Yokohama Local Meteorological Observatory
99 Yamate-cho, Naka-ku
Yokohama, 231-0862
Japan
Tel: +81-45 621 1991
Fax: +81-45 622 3520
Telex: 2222163

KENYA

Ali Juma Mafimbo, PMO
PO Box 98512
Mombasa
Kenya
Tel: +254-11 225687 / 433689
Fax: +254-11 433689
E-mail: mafimbo@lion.meteo.go.ke
### MALAYSIA

**Port Bintulu**

Paul Chong Ah Poh, PMO  
Bintulu Meteorological Station  
P.O. Box 285  
97007 Bintulu  
Sarawak  
Malaysia  
Fax: +60-86 314 386

**Port Klang**

Mohd Shah Ani, PMO  
Malaysian Meteorological Service  
Jalan Sultan  
46667 Petaling Jaya  
Selangor  
Malaysia  
Fax: +60-3 7957 8046

**Port Kinabalu**

Mohd Sha Ebung, PMO  
Malaysian Meteorological Service  
7th Floor, Wisma Dang Bandang  
P.O. Box 54  
88995 Kota Kinabalu  
Sabah  
Malaysia  
Fax: +60-88 211 019

### NEW ZEALAND

**Manager Marine Operations**  
Meteorological Service New Zealand Ltd.  
P.O. Box 722  
Wellington  
New Zealand  
Tel: +64-4 4700 789  
Fax: +64-4 4700 772

### NORWAY

Tor Inge Mathiesen, PMO  
Norwegian Meteorological Institute  
Allégaten 70  
N-5007 Bergen, Norway  
Tel: +47-55 236600  
Fax: +47-55 236703  
Telex: 40427/42239

### PAKISTAN

Hazrat Mir, Senior Meteorologist  
Pakistan Meteorological Department  
Metropolitan Office  
Jinnah International Airport  
Karachi, Pakistan  
Tel: +92-21 45791300, 45791322  
Fax: +92-21 9248282  
E-mail: pmdmokar@khi.paknet.com.pk

### PHILIPPINES

**Cagayan de Oro City**

Leo Rodriguez  
Pagasa Complex Station  
Cagayan de Oro City 9000, Misamis Occidental  
Philippines  
Tel: +63-8822 722 760

**Davao City**

Edwin Flores  
Pagasa Complex Station, Bangoy Airport  
Davao City 8000  
Philippines  
Tel: +63-82 234 08 90

**Dumaguete City**

Edsin Culi  
Pagasa Complex Station  
Dumaguete City Airport  
Dumaguete City, Negros Oriental 6200  
Philippines  
Tel: +63-35 225 28 04
Points of Contact

**Legaspi City**
Orthello Estareja
Pagasa Complex Station
Legaspi City, 4500
Philippines
Tel: +63-5221 245 5241

**Iloilo City**
Constancio Arpon, Jr.
Pagasa Complex Station
Iloilo City 5000
Philippines
Tel: +63-33 321 07 78

**Mactan City**
Roberto Entrada
Pagasa Complex Station, Mactan Airport
Mactan City, CEBU 6016
Philippines
Tel: +63-32 495 48 44

**Manila**
Dr. Juan D. Cordeta & Benjamin Tado, Jr
Pagasa Port Meteorological Office
PPATC Building, Gate 4
South Harbor
Manila 1018
Philippines 1100
Tel: +63-22 527 03 16

**POLAND**
Józef Kowalewski, PMO
Gdynia and Gdansk Institute of Meteorology and Water Management
Waszyngton 42
PL-81-342 Gdynia
Poland
Tel: +48-58 6204572
Fax: +48-58 6207101
Telex: 054216
E-mail: kowalews@stratus.imgw.gdynia.pl

**SCOTLAND**
Tony Eastham, PMO
Met Office
Saughtron House, Broomhouse Drive
Edinburgh EH11 3XQ
United Kingdom
Tel: +44-131 528 7305
Fax: +44-131 528 7345
E-mail: pmoedinburgh@metoffice.gov.uk

Ian J. Hendry, Offshore Adviser
Met Office
Davidson House Campus 1
Aberdeen Science & Technology Park
Bridge of Don
Aberdeen AB22 8GT
United Kingdom
Tel: +44-1224 407 557
Fax: +44-1224 407 568
E-mail: ihendry@metoffice.gov.uk

**REPUBLIC OF KOREA**

**Incheon**
Inchon Meteorological Station
25 Chon-dong, Chung-gu
Inchon
Republic of Korea
Tel: +82-32 7610365
Fax: +82-32 7630365

**Pusan**
Pusan Meteorological Station
1-9 Taechong-dong, Chung-gu
Pusan
Republic of Korea
Tel: +82-51 4697008
Fax: +82-51 4697012

**RUSSIAN FEDERATION**
Ravil S. Fakhrutdinov
Roshydromet
12, Novovagan’kovsky Street
Moscow 123242
Russian Federation
Tel: +7-095 255 23 88
Fax: +7-095 255 20 90
Telex: 411117 RUMS RF
E-mail: marine@mcc.mecom.ru fakhrutdinov@rhmc.mecom.ru

**SAUDI ARABIA**
Mahmoud M. Rajkhan, PMO
Meteorology and Environmental Protection Administration (MEPA)
P.O. Box 1358
Jeddah 21431
Saudi Arabia
Tel: +966-2 6512312 Ext. 2252 or 2564
Points of Contact

SINGAPORE

Amran bin Osman, PMS
Meteorological Service
P O Box 8
Singapore Changi Airport
Singapore 9181
Tel: 5457198
Fax: +65 5457192
Telex: RS50345 METSIN

SOUTH AFRICA

Headquarters

Johan Stander
Regional Manager: Western Cape
Antarctica and Islands
South African Weather Service
P O Box 21 Cape Town International Airport 7525
South Africa
Tel: +27 (0) 21 934 0450
Fax: +27 (0) 21 934 4590
Cell: +27 (0) 82 281 0993
Weatherline: 082 162
E-mail: johan.stander@weathersa.co.za

Cape Town

C. Sydney Marais, PMO
Cape Town Regional Weather Office
Cape Town International Airport
Cape Town 7525
South Africa
Tel: +27-21 934 0836
Fax: +27-21 934 3296
E-mail: maritime@weathersa.co.za

Durban

Gus McKay, PMO
Durban Regional Weather Office
Durban International Airport
Durban 4029
South Africa
Tel: +27-31 408 1446
Fax: +27-31 408 1445
E-mail: mckay@weathersa.co.za

SWEDEN

Johan Svalmark
SMHI
SE-601 75 NORRKÖPING
Sweden
Tel: + 46 11 4958000
E-mail: johan.svalmark@smhi.se

TANZANIA, UNITED REPUBLIC OF

H. Charles Mwakitosi, PMO
P.O. Box 3056
Dar es Salaam
United Republic of Tanzania

THAILAND

Kesrin Hanprasert, Meteorologist
Marine and Upper Air Observation Section
Meteorological Observation Division
Thai Meteorological Department
4353 Sukhumvit Road, Bangna
Bangkok 10260
Thailand
Tel: +66-2 399 4561
Fax: +66-2 398 9838
E-mail: wattana@fc.nrct.go.th

UNITED KINGDOM

Headquarters

Sarah C. North, Marine Networks Manager, Met Office
Observations Supply - Marine Networks
FitzRoy Road
Exeter
Devon
EX1 3PB
United Kingdom
Tel: +44 1392 885617
Fax: +44 1392 885681
E-mail: sarah.north@metoffice.gov.uk or
Group E-mail: Obsmar@metoffice.gov.uk

David Knott, Marine Technical Coordinator, Met Office
Observations - Marine Networks
FitzRoy Road
Exeter
Devon
EX1 3PB
United Kingdom
Tel: +44 1392 88 5714
Fax: +44 1392 885681
E-mail: David.Knott@metoffice.gov.uk or
Group E-mail: Obsmar@metoffice.gov.uk
NOAA WEATHER RADIO NETWORK
(1) 162.550 mHz
(2) 162.400 mHz
(3) 162.475 mHz
(4) 162.425 mHz
(5) 162.450 mHz
(6) 162.500 mHz
(7) 162.525 mHz

Channel numbers, e.g. (WX1, WX2) etc. have no special significance but are often designated this way in consumer equipment. Other channel numbering schemes are also prevalent.

The NOAA Weather Radio network provides voice broadcasts of local and coastal marine forecasts on a continuous cycle. The forecasts are produced by local National Weather Service Forecast Offices.

Coastal stations also broadcast predicted tides and real time observations from buoys and coastal meteorological stations operated by NOAA’s National Data Buoy Center. Based on user demand, and where feasible, Offshore and Open Lake forecasts are broadcast as well.

The NOAA Weather Radio network provides near continuous coverage of the coastal U.S, Great Lakes, Hawaii, and populated Alaska coastline. Typical coverage is 25 nautical miles offshore, but may extend much further in certain areas.

Points of Contact

Scotland
Emma Steventon,
Port Meteorological Officer, Met Office
Saughton House
Broomhouse Drive
EDINBURGH EH11 3XQ
United Kingdom
Tel: +44 (0)131 528 7318
Mobile : +44 (0) 7753880209
E-mail: emma.steventon@metoffice.gov.uk or
E-mail: pmoscotland@metoffice.gov.uk

South West England & South Wales
Lalinda Namalarachchi
Port Meteorological Officer, Met Office
c/o Room 231/19
National Oceanography Centre, Southampton
University of Southampton, Waterfront Campus
European Way
SOUTHAMPTON SO14 3ZH
United Kingdom
Tel: +44 2380 638339
Mobile : +44 (0) 7753 880468
E-mail: lailitary.namalarachchi@metoffice.gov.uk or
Email: pmosouthampton@metoffice.gov.uk

South East England
Joe Maguire
Port Meteorological Officer
Met Office
127 Clerkenwell Road
London    EC1R 5LP
United Kingdom
Tel: +44 2072047453
Mobile : +44 (0) 7753 880 467
E-mail: joe.maguire@metoffice.gov.uk or
E-mail: pmolondon@metoffice.gov.uk

North England & North Wales
Tony Eastham
Port Meteorological Officer
Met Office
Unit 4, Holland Business Park,
Spa Lane,
Lathom, L40 6LN
United Kingdom
Tel: +44 (0)1695 550834
Mobile : +44 (0) 7753 880 484
E-mail: tony.eastham@metoffice.gov.uk or
E-mail: pmo.liverpool@metoffice.gov.uk